ARTICLE

A Randomization Test for Controlling Population Stratification
in Whole-Genome Association Studies

Gad Kimmel, Michael I. Jordan, Eran Halperin, Ron Shamir, and Richard M. Karp

Population stratification can be a serious obstacle in the analysis of genomewide association studies. We propose a method
for evaluating the significance of association scores in whole-genome cohorts with stratification. Our approach is a
randomization test akin to a standard permutation test. It conditions on the genotype matrix and thus takes into account
not only the population structure but also the complex linkage disequilibrium structure of the genome. As we show in
simulation experiments, our method achieves higher power and significantly better control over false-positive rates than
do existing methods. In addition, it can be easily applied to whole-genome association studies.

One of the principal difficulties in drawing causal infer-
ences from whole-genome case-control association studies
is the confounding effect of population structure. Differ-
ences in allele frequencies between cases and controls may
be due to systematic differences in ancestry rather than
to association of genes with disease.'® This issue needs
careful attention in forthcoming large-scale association
studies, given the lack of knowledge regarding relevant
ancestral history throughout the genome and the need to
aggregate across many individuals to achieve high levels
of discriminatory power when many markers are screened.

Existing methods for controlling for population strati-
fication make a number of simplifying assumptions. “Ge-
nomic control” is a widely used method that views the
problem as one of overdispersion and attempts to estimate
the amount by which association scores are inflated by
the overdispersion.”’® An assumption of this method is
that the overdispersion is constant throughout the region
being tested. This assumption seems ill advised in large-
scale studies of heterogeneous regions; indeed, when the
assumption is wrong, it can lead to a loss of power and a
loss of control over the test level.®* EIGENSTRAT is a recent
proposal that computes principal components of the ge-
notype matrix and adjusts genotype and disease vectors
by their projections on the principal components.® The
assumption in this case is that linear projections suffice
to correct for the effect of stratification; the simulation
results that we present below put this assumption in
doubt. Yu and colleagues'' presented a unified mixed lin-
ear model to correct for stratification. Similar to EIGEN-
STRAT, their model assumes linearity, but it also accounts
for multiple levels of relatedness. Finally, “structured as-
sociation” refers to a model-based approach in which
Bayesian methods are used to infer subpopulations and
association statistics are then computed within inferred

subpopulations.’" The assumptions in this approach in-
here in the choice of probabilistic model and in the thres-
holding of posterior probabilities to assign individuals to
subpopulations. This approach is highly intensive com-
putationally, limiting the range of data sets to which it
can be applied.

Correcting for stratification is challenging, even if the
population structure is known. One may treat the popu-
lation structure as an additional covariate of the associa-
tion test. However, in contrast to other covariates, such
as age and sex, the genotype information strongly depends
on the population structure. Therefore, even if the pop-
ulation structure is known, correcting its confounding ef-
fect must take into account this dependency. To exemplify
this problematic issue, consider EIGENSTRAT, which uses
the axes of variation as covariates (which represent pop-
ulation structure) in a multilinear regression. In some in-
stances, we show that EIGENSTRAT accurately finds the
population structure but still fails to correct its effect prop-
erly. This happens not because the population structure
was inferred incorrectly but because the multilinear re-
gression assumptions do not hold (see the “Discussion”
section and appendix A).

An alternative to existing methods is to consider ran-
domization tests (e.g., permutation tests); these are con-
ditional frequentist tests that attempt to compute P values
directly by resampling from an appropriate conditional
probability distribution and by counting the fraction of
resampled scores that are larger than the observed score.
On the one hand, randomization tests seem well matched
to the stratification problem. Rather than working with
individual association scores that require a subsequent
familywise correction, we can directly control the statistic
of interest (generally, the maximum of association scores
across markers). Moreover, by working conditionally, the
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randomization approach can take into account possible
dependencies (linkage disequilibrium [LD]) among mark-
ers, an important issue not addressed directly by existing
methods. On the other hand, the computational demands
of randomization tests can be quite high and would seem
to be prohibitively high in large-scale association studies.

Even if the computational issues can be surmounted,
performing a standard permutation test with population
stratification is not straightforward. The main difficulty is
that the null model of the standard permutation test as-
sumes that each one of the individuals is equally likely to
have the disease. This assumption could lead to spurious
associations when population structure exists.'* Consider
a data set that contains two different populations, each
with different prevalences of the disease. Consider further
that the population to which each individual belongs is
known. In this case, a test for association mapping cannot
assume a null model in which the probability of having
the disease is equal for all individuals. Rather, the prob-
ability of each permutation should be weighted differ-
ently, according to the population structure.

In this article, we show how to perform a randomization
test that takes into account the population structure. Our
method—which we refer to as the “population stratifi-
cation association test” (PSAT)—works as follows. We as-
sume that a baseline estimate is available for the proba-
bility that each individual has the disease, independent
of their genotype. This can be obtained from any method
that estimates population structure, including STRUC-
TURE" or EIGENSTRAT?; for computational efficiency, we
used FIGENSTRAT for the results we report here. We refer
to the vector of these estimates as the “baseline probability
vector.” We then consider a null hypothesis in which each
of the individuals has the disease independently according
to the corresponding component of the baseline proba-
bility vector. Conceptually, we then resample disease vec-
tors under this null model and, for each sample, compute
a statistic (e.g., the association score of the most associated
marker). Note that this process is based on the resampled
disease vector and the original genotype matrix—that is,
we work conditionally on the observed genotypes. The P
value is then estimated as the fraction of resampled sta-
tistics that are larger than the observed statistic.

Our simulations show that PSAT achieves higher power
than that of existing methods. In simulated panels of
1,000 cases and 1,000 controls, PSAT yielded an advantage
of up to 14% in power, compared with EIGENSTRAT. An
even larger difference was observed between PSAT and
genomic control. In addition, PSAT has significantly better
control over false-positive rates. When population strati-
fication exists, PSAT maintains a constant false-positive
rate, compared with the relatively high (up to 1) false-
positive rates of the other methods.

Performed naively, the computation underlying PSAT
would be feasible in general only for small problems. As
we show, however, the combination of importance sam-
pling and dynamic programming renders PSAT quite fea-

sible for typical whole-genome studies. In a study involv-
ing 500,000 SNPs and 1,000 cases and 1,000 controls, we
compute a P value in a few minutes.

PSAT is similar in spirit to the method of Kimmel and
Shamir," but the algorithmic methodology is quite dif-
ferent; here, as opposed to in the work of Kimmel and
Shamir," each of the samplings is weighted differently
according to the population structure. This renders the
methodology employed by Kimmel and Shamir'*—uni-
form sampling from the set of permutations induced by
a fixed contingency table—inapplicable to the population
substructure problem. To solve this problem, we have had
to develop a new technique based on a dynamic program-
ming recursion across individuals. This technique makes
it possible to efficiently sample disease vectors via impor-
tance sampling.

Methods
Definitions

Let M be the number of individuals tested and N be the number
of markers. The M x N genotype matrix is denoted by G. Hence,
G,; = s if the ith individual has type s in the jth marker. There
are three possible values for each entry in G: O (for the homo-
zygous allele), 1 (for the heterozygous allele), or 2 (for the other
homozygous allele). Let the vector of the disease status be denoted
by d. The entries of d are O (for a healthy individual) or 1 (for
an individual who has the disease).

For a pair of discrete vectors x,y, let Q(x,y) denote their con-
tingency table—that is, Q(x,y) is a matrix, where Q(x,y);; =
[{k|x(k) = i, y(k) = j}|. (In our case, the matrix is 3 x 2 in size.)
An “association function A” is a function that assigns a positive
score to a contingency table. Typical examples of association
functions are the Pearson score and the Armitage trend statistic.
We have used the Armitage trend statistic in our work; however,
it is important to point out that our algorithm does not use any
specific properties of the association function, and any other as-
sociation score function can be used instead.

An “association score” is a function of the genotype matrix and
an arbitrary disease vector e (a binary vector of size M) and is
defined by S(G,e) = max;A[Q(G,e)]. Informally, this is the score
that is obtained from the most associated locus.

The goal is to calculate the significance, which is defined as the
probability of obtaining an association score at least as high as
S(G,e) under a null model. Formally, if e is a random disease
vector, the P value is

Pr[S(G,e) = S(G,d)] .

The Randomization Test

Let f(-) be the probability mass function of e. We first define a
null model for the case in which there is only a single population.
In this case, a natural null model is one that assumes that the
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components of e are independent, and each has probability
>.d;/M of being 1, and 0 otherwise. Hence,

T (1-¢)

sd\" [ sd)
o= <=3

Intuitively, if we do not have any information other than the
disease status, the events that the individuals have the disease
are independent, with the probability of disease obtained by plug-
ging in the maximume-likelihood estimate. Note that the ran-
domization test based on this null model is very close to the
standard permutation test. The difference is that, in the per-
mutation test, >,e; = 3,d—that is, the number of the persons
who have the disease stays the same for each resampling. In our
case, this number is not fixed. Note, however, that since it is the
sum of independent, identically distributed Bernoulli random
variables, its distribution is concentrated around X, d..

We now consider the case in which population stratification
exists. In this case, it no longer suffices to consider a null model
in which each person has the same probability of having the
disease; rather, we need to obtain probabilities on the basis of
estimates of the individual’s population.

Formally, let p denote the baseline probability vector, a vector
whose components p; denote the probability that the ith person
has the disease, given the population structure. Since indepen-
dence is assumed in this conditional distribution, we obtain the
null model

fie) = [1pic—pye. (1)

The goal is to calculate the P value under this null model.

This procedure requires the baseline probability vector p as an
input. This vector can be estimated by any of several methods.
Since our focus in the present article is the subsequent step of
computing statistical significance, we simply adapt an existing
method to our purposes.

In particular, we have found that the following simple ap-
proach has worked well in practice. We used EIGENSTRAT® to
find the eigenvectors that correspond to a small number of axes
of variation (we used two axes in our experiments). We then
projected individuals’ genotype data onto these axes and clus-
tered the individuals by use of a K-means clustering algorithm
(we used K = 3 in our experiments). Finally, we obtained p; for
each person by computing a maximum-likelihood estimate based
on the cluster assignments—that is, we set

s d,
pi — ieCj ,
|Cil

where C, is the set of indices for all individuals in the cluster to
which the ith individual is assigned.

Given the baseline probability vector, we now wish to calculate
the statistical significance of the association score. A naive ap-
proach to performing this calculation is to use a simple Monte
Carlo sampling scheme. The algorithm samples e many times
according to equation (1) and, for each sample, calculates the
statistic S(G,e). The fraction of times that this statistic exceeds
the original value S(G,d) is the estimated P value. We call this
method the “standard sampling algorithm.” The running

time of this approach is O(MNPy), where Ps is the number of
permutations.

Efficient Calculation

We now describe our approach that provides a computationally
efficient alternative to the standard sampling algorithm. We use
the methodology of importance sampling.'® Informally, in the
standard sampling algorithm, samples are taken from the set of
all possible disease vectors (2"), which is a very large set. In PSAT,
instead of sampling from this huge space, sampling is done from
the space of all “important disease vectors”—namely, all possible
disease vectors that give a larger association score than the orig-
inal one.

The importance sampling is done by repeated sampling of vec-
tors from a sampling space G with probability measure g that we
define below. If P, samplings are performed, and x; is the ith
sampled vector, then the P value is estimated by

15 fix)
P T g(x)

The main steps of our algorithm are the same as in the simpler
setting. (i) A column (or a SNP) is sampled. (ii) A contingency
table is sampled for that column from the set of all possible con-
tingency tables that are induced by this column and whose as-
sociation score is at least as large as the original one. (iii) An
important disease vector that is induced by this contingency table
is sampled. The key underlying idea in this procedure is that,
although the size of the set of all possible disease-vector instances
may be very large, the number of all possible contingency tables
is polynomial in the problem size.

Although our algorithm is similar in spirit to the importance
sampler of Kimmel and Shamir,'* that method did not treat pop-
ulation stratification, and the analysis described there does not
apply to our case. In particular, in our case, the different possible
disease vectors are not equally probable, and this requires new
algorithmic ideas, to which we now turn.

Let T'be a contingency table, j be a column, and e be a sampling
disease vector. For contingency table T, we use T;; to denote the
component of the ith row of the jth column of T. We would like
to calculate the conditional probability of an important sampling
disease vector, given its inducing column. For that purpose, we
use the factorization Pr(e|j) = Pr(e|T) Pr(T|j), which will be de-
rived below. Intuitively, this equation holds because, given j, only
one table T determines e. Our main effort, henceforth, is to show
how to sample from and calculate both Pr(e|T) and Pr(Tj).

The sampling space G is composed of the set of all possible
disease vectors whose score equals or exceeds the original score.
That is, G contains the set of events {e|S(G,e) = S(G,d)}. We now
define a probability measure on G and show how to sample from
it.

For a specific contingency table T, we write e < T if the binary
vector e is induced by T—that is, >.¢; = 3, T;,. In other words,
the number of ones in e equals the number of diseased individuals
according to T.

For a specific column j in G, let T be the set of all contingency
tables with score equal to or larger than the original statistic.
Hence, T;: = {TJ3e:T = QG,;,e) AA(T) = S(G,d)}. Each table in
T, induces many instances of the disease vector, and each of them
may have a different probability.

To define a probability measure on G, we first define a proba-
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bility measure on the columns. Let /, be the set of all columns of
G that induce at least one contingency table with a score larger
or equal to that of the original statistic. We define

1 .
mlell

0  otherwise

Pr(j): = )

We now investigate several properties of the events in G. The
probability of a disease vector e, given contingency table T, is

€ e TAAD) =SG.ad)
Prie|T) = | & G
0 otherwise

Given a column j, the probability of table T is

= (D) = $(G,d)
Y = S(G,
Pr (T|]) = (g'r,egtzf(e) . (4)
0 otherwise

Multiplying equation (3) by equation (4) gives

Pr(e|T)Pr(T}j) = Pr(e,T]))
= Pr(el)) . )

The first equation follows from the fact that, once table Tis given,
the probability of e depends solely on T, so Pr(e|T) = Pr(e|T,).
The second equation holds because, given j, e is induced by ex-
actly one table in T, The probability measure on G, denoted by

8(+), is

-%Emwm ©)

X(e) |]1 jiel
where Pr(e|j) can be obtained by equation (5).

Next, we show how to calculate equations (3) and (4) efficiently.
The challenge is to compute the sums in these equations. Cal-
culating 3, _;, (here, Q is a contingency table) can be done directly
by going over all possible tables in T; in O(M?) time.

Calculating >, f(e) for a given contingency table, T, is more
challenging. The number of all possible e induced by T is

5%

which may be very large. This is solved by a dynamic program-
ming approach. For table 7, we build three different matrices—
W,, W,, and W,—one for each different type of marker: 0, 1, and
2, respectively. Since the construction of these three matrices is
the same computationally, we will show how to generate W, only.

W, is of size M, x (M, + 1), where M, is the number of persons
with locus type i. The components of W, are defined as follows.
W,(i,j) is the probability that the set of the first i individuals with
locus type O contains exactly j individuals with the disease. Note

that i goes from 1 to M,, and j from 0O to M,. We use the notation
P for the baseline probability of the ith person with locus type
0.

Initialization of W, is

a

Wo(@,0) = [111-p],

i=1

1-p? a=0
Wy(1,a) = {p\? a=1 ,
0 otherwise

and the transition is
Wo(ij) = Woli = L)1 = pi®] + Wo(i = 1j = D)pi® .
Using these matrices, we have

Zf(e) = Wo(M,, T, ))W,(M,, T, ,) W,(M,, T, ) .

e<T

To complete the description of the importance-sampling pro-
cedure, we need to show how we sample vector e from G. This
is done in three steps. (i) Randomly choose a column j from the
set J; according to equation (2). (ii) Sample table T from T; ac-
cording to equation (4). (iii) Sample disease vector e from T ac-
cording to equation (3).

Step (iii) in this algorithm cannot be performed directly because
there are many possible disease vectors induced by 7. The sam-
pling can be done using the dynamic programming matrices
W,, W,, and W,. The idea is that, given the contingency table T,
each set of components of e that correspond to persons with the
same locus type can be drawn independently. Without loss of
generality, we will show how to sample the set of components
of e that correspond to persons with the locus type 0.

The sampling is done in W,, starting at location W,(M,,T,,)
and going backward. At location W(i,j), with probability

[1 - p"IWo(i — 1))
(1= pPIWo(i = 1Lj) + pPWo(i=1,j-1) '

go to W (i — 1,j), and the corresponding ith individual with locus
type O at e is set to 0. At location W(i,j), with probability

POW(i—1j-1)
[1=pPIWo(i = 1Lj) + pPWo(i=1,j - 1) '

go to Wy(i —1,j — 1), and the corresponding ith individual with
locus type O at e is set to 1. The process is stopped when i = j;
in this case, all the persons with locus type O whose indices are
smaller than i are set to 1.

The time complexity can be considerably reduced by exploiting
the biological properties of the data set. We assume that two SNPs
that are separated by C or more SNPs along the genome are in-
dependent, because of the LD decay along the chromosome. C
is called the “linkage upper bound” of the data.

According to equation (6), the probability of the sampled
disease vector e is the average of Pr(e|T)). Observe that, if
A(e,d) <S5(G,d), then Pr(e|T) = 0. Using the LD decay property,
we expect that e and SNPs that are far apart will be independent.
Hence, when g(e) is calculated for each vector e, it is unnecessary
to range over all N SNPs; only SNPs within a distance of C need
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to be checked. The rest of the SNPs are independent of the chosen
column, so the expected number of columns that give a score
higher than S(G,d) is (N — 2C — 1)q, where q is the probability
that a single column will result in a higher score than S(G,d).
Note that g need be calculated only once at the preprocessing
step. Consequently, only O(MC) operations are needed to cal-
culate g(e), instead of O(MN) operations. For each permutation,
a total of O(M?) operations are required to go over all contingency
tables and to build the dynamic programming tables. In sum-
mary, the total running time of the algorithm is O[Py(M* +
MC)].

Results
Data Sets

We used the HapMap resource, using SNPs from the Af-
fymetrix GeneChip Human Mapping 500K Array Set. We
used only SNPs that were typed in all three populations:
YRI (Yoruba people of Ibadan, Nigeria), ASI (Asian popu-
lation), and CEU (population of western European ances-
try). We excluded the X chromosome. Overall, 477,714
SNPs were used.

Comparison with Previous Methods

We compared PSAT with genomic control® and EIGEN-
STRAT.® It was not possible to apply structured associa-
tion'*" and the mixed-model method'' to our data sets,
because of the high computational cost incurred by these
methods. Comparison with the recent work of Epstein et
al."” was also not possible, because the software is available
only as an implementation that uses commercial software.
However, it is noteworthy that, similar to previous meth-
ods, the mixed-model and the methods of Epstein et al."”
do not account for the LD structure.

For each method, a study was defined to be significant
if the P value, calculated as the statistic of the most as-
sociated SNP, was <.05. False-positive rate and power were
calculated by performing 100 different experiments. PSAT
calculates the P value directly, and, for genomic control
and EIGENSTRAT, we used a Bonferroni correction. There
may be better ways to correct for multiple testing with
these methods, but, as was mentioned above, it is not clear
which approach would be better. Simply permuting the
cases and controls would be wrong statistically, since this
assumes that the chance of having the disease is equal
among all individuals from all populations. Note that,
when false-positive rates are measured, this conservative
correction gives an advantage over EIGENSTRAT and ge-
nomic control.

False-positive rates.—The simulations conducted by Price
et al.® used the Balding-Nichols model to generate differ-
ent populations. Although this approach matches F, be-
tween simulated populations and real ones, two key as-
pects of that simulation are unrealistic. First, according to
this model, SNPs are sampled independently. (Fs; com-
pares the genetic variability within and between different
populations.’®) In real whole-genome studies, there is a
strong correlation between nearby SNPs. Second, accord-

ing to the model of Price et al.,® for each SNP, an ancestral-
population allele frequency p was drawn from the uniform
distribution on [0.1,0.9]. The allele frequencies for pop-
ulations 1 and 2 were each drawn from a beta distribution
with parameters p(1 — Fs;)/Fs and (1 — p)(1 — Fg)/Fg;. For
Fg = 0.004, the value used in that study, this gives prac-
tically zero probability (<107 '°) that a SNP has frequency
0 or 1, whereas, in real populations, there are many ex-
amples of SNPs that present only one allele in one pop-
ulation while, in the other population, both alleles are
observed. To provide a more realistic test of PSAT, we
worked with real SNPs from the HapMap project.

To generate additional haplotypes based on haplotypes
identified by the HapMap project, we used the stochastic
model of Li and Stephens'’ as a generative procedure. This
is done as follows.'* Suppose k haplotypes are currently
available. Then, the (k + 1)st haplotype is generated in two
steps. First, recombination sites are determined assuming
a constant recombination rate along the chromosome.
Second, for each stretch between two neighboring recom-
bination sites, one of the k haplotypes is chosen with prob-
ability 1/k. The process is repeated until the required num-
ber of haplotypes is obtained. The recombination rate
along this process is 4N,r/k, where r is the probability of
recombination between two adjacent sites per meiosis, set
to 10°%, and N, is the effective population size, set to
10,000. This approach preserves the dependency between
nearby SNPs, and the resulting data sets mimic real sce-
narios more accurately.

The first set of experiments was done on mixtures of
more than one population, under the assumption that
there is no causal SNP. This was done by randomly as-
signing different population types to the cases and the
controls. In all tests, we had 500 cases and 500 controls,
and we used the 38,864 SNPs on chromosome 1. Popula-
tion acronyms are adopted from the HapMap project (see
the “Methods” section), and we use “ASI” for the Asian
population (including Japanese from Tokyo and Han Chi-
nese from Beijing).

The following tests were done. (i) All the controls were
sampled from population CEU, and the cases were sam-
pled as an (r,1 — r) mixture of populations CEU and ASI,
respectively. (ii) Cases were sampled as an [r,(1 —r)/2,(1 —
/2] mixture of populations CEU, ASI, and YRI, respec-
tively. Controls were sampled as an [r,(1 —1)/2,(1 —1)/2]
mixture of populations YRI, ASI, and CEU, respectively.
For both (i) and (ii), we tried different values of r: r =
0.1, 0.2,..., 0.9. The results are presented in figure 1.

Given that there is no causal SNP in this test, the false-
positive rate is the fraction of the experiments with P<
.05. In all the experiments, PSAT’s false-positive rate was
<0.05 and was lower than or equal to that of the other
two methods. Generally, EIGENSTRAT was more accurate
than genomic control when applied to a mixture of two
populations and was less accurate for a mixture of three
populations. Both of the methods exhibited a false-posi-
tive rate of 1.0 in several cases (fig. 1).
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Figure 1. Comparison of false-positive rate between PSAT, EI-

GENSTRAT, and genomic control. The data set was composed of
500 cases and 500 controls sampled from three populations: CEU,
ASI, and YRI. A, Cases sampled as an (r,1 —r) mixture of popu-
lations CEU and ASI, respectively, and controls sampled from CEU.
B, Cases sampled as an [r,(1—r)/2,(1 —r)/2] mixture of popu-
lations CEU, ASI, and YRI, respectively, and controls sampled as
an [r,(1—r)/2,(1 —r)/2] mixture of YRI, ASI, and CEU, respec-
tively. Note that, in panel A when r = 1 and in panel B when
r = 1/3, the cases and the controls have the same population
structure. All methods perform well when r is close to this value.
Each dot represents the average of 100 experiments.

Power.—To study the power of the methods, we applied
them to a case-control study, where the cases were sam-
pled as an (r,1 — r) mixture of populations CEU and ASI,
respectively, and controls were sampled from CEU. We
used a multiplicative model for generating samples of

cases and controls. We simulated panels with 1,000 cases
and 1,000 controls, and the first 10,000 SNPs of chro-
mosome 1. For each panel, a SNP was randomly chosen
to be the causal SNP and was then removed from the
panel. We set the disease prevalence to 0.01 and the rel-
ative risk to 1.5.

To compare the power of the different methods, one
needs to fix the false-positive rate. Doing this is not
straightforward because, as described above, when pop-
ulation stratification exists, EIGENSTRAT and genomic
control have high false-positive rates (and thus also have
high but meaningless “power”), whereas PSAT maintains
a false-positive rate <0.05. To overcome this problem, we
artificially adjusted the power of EIGENSTRAT and ge-
nomic control as follows. For each value of r, we generated
100 additional panels with the same population structure,
without a causal SNP. We then applied both algorithms
to these data sets. The 5% quantile of the obtained P values
was used as the new threshold for statistical significance,
instead of .05. (When population structure exists, this
threshold is <.05.) To estimate power, an additional 100
panels with causal SNPs were simulated. By use of this
approach, the power is evaluated while the significance
(type I error rate) is fixed to 0.05.

The results are presented in figure 2. For the P value
threshold of .05, the advantage in the power of PSAT over
EIGENSTRAT reaches up to 14%. A more prominent dif-
ference is observed between PSAT and genomic control.
A power comparison for a single population (CEU) when
there is a causal SNP is presented in figure 3, for different
P value cutoffs. Since no stratification exists in this case,

X PSAT
EIGENSTRAT
Genomic control

Figure 2. Power comparison between PSAT, EIGENSTRAT, and ge-
nomic control. The data sets were composed of 1,000 cases and
1,000 controls. Cases were sampled as an (r,1 — r) mixture of pop-
ulations CEU and ASI, and controls were sampled from CEU. The
power is adjusted for all methods for a statistical significance level
of .05.
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Figure 3. Power comparison for one population (i.e., when there
is no population structure in the data) between PSAT, Bonferroni
correction, EIGENSTRAT, and genomic control. The data sets were
composed of 1,000 cases and 1,000 controls from the CEU
population.

there is no need to control the P value artificially. Again,
PSAT shows a consistent advantage. In this experiment,
the naive Bonferroni correction also obtained higher
power than EIGENSTRAT.

Finding several causal SNPs.—We tested the performance
of the algorithms for discovering several hidden causal
SNPs. For that, we repeated the above experiments, with
all the controls sampled from population CEU and the
cases sampled as an (r,1 —r) mixture from populations
CEU and ASI, respectively. Of the 10,000 SNPs, we ran-
domly chose 2 causal SNPs, each with risk ratio of 1.5. In
each algorithm, we used the ranking of the ordered P val-
ues obtained separately for each SNP. A discovery was de-
fined if a SNP at a distance of <10 kb from a causal SNP
appeared in the top 100 ranked SNPs. To calculate the
discovery rate, each of the experiments was repeated 100
times. The comparison is summarized in figure 4. As can
be observed, PSAT shows a higher discovery rate than that
of the other algorithms. As expected, the advantage is
more prominent when the level of population stratifica-
tion is higher. Since genomic control does not reorder the
scores, the results presented for it and for the original
scores are the same.

Running Time

To illustrate the essential role played by the importance-
sampling procedure in our approach, we conducted a
large-scale experiment, using all SNPs from the Affymetrix
500K GeneChip for all chromosomes (477,714 SNPs in
total). We used 1,000 cases and 1,000 controls. In this
setting, the running time for each step of a naive sampling

algorithm was 66 s on a powerful workstation (Sun Mi-
crosystems Sun Fire V40z workstation with a Quad 2.4
GHz AMD Opteron 850 Processor and 32 GB of RAM).
Hence, to obtain an accuracy of 10 ¢ (which requires
~10° samples), ~764 d are required, and, for a P value of
10°*, ~8 d are required. The PSAT algorithm finishes in 22
min in both cases.

Evaluating Accuracy and Convergence of the Importance-
Sampling Algorithm

Since PSAT is based on importance sampling, it is impor-
tant to test the variance of the obtained P values and to
check convergence to the correct P value. We sampled
cases and controls from one population (CEU), as de-
scribed in the “Methods” section. We estimated the SD
for each single run of the algorithm, on the basis of the
variance of the importance-sampling weights. The relation
between the SD and the P value is presented in figure 5.
It can be observed that the SD is ~1/10 of the P value.
To verify convergence of the importance sampling to
the standard sampling algorithm empirically, we con-
ducted 100 experiments with 100 cases and 100 controls,
using 1,000 SNPs. (We used a limited number of SNPs and
individuals in this experiment, to be able to perform many
samplings of the standard sampling algorithm.) We ap-
plied PSAT with importance sampling and the standard
sampling version of PSAT with 10° permutations. CIs were
calculated on the basis of the estimated SD of the standard
sampling test. Convergence was defined to be correct if
the P value obtained by the importance sampling tech-
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Genomic control (original scores)
60
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Figure 4. Comparison of causal SNP discovery rate when there

are two causal SNPs. The data sets were composed of 1,000 cases
and 1,000 controls from a mixture of CEU and ASI populations, as
in figure 2. Each panel contains two hidden causal SNPs. For each
algorithm, a discovery of a causal SNP was defined as the event
where a SNP within 10 kb of a causal SNP was among the 100
top-ranked SNPs.
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Figure 5. SD and P value. The X-axis is the logarithm of the P

value. The Y-axis is the logarithm of the SD of the P value. Data
sets comprised 100 cases and 100 controls sampled from the CEU
population. Logarithms are base 10.

nique was in the CI of the standard sampling algo-
rithm. PSAT converged to the correct result in all 100
experiments.

Discussion

We have presented a methodology for controlling for pop-
ulation structure on the basis of randomization tests. The
method is a conditional method that takes into account
both population structure and dependencies between
markers. This yields an increase in power relative to that
of competing methods.

Our simulations also show that existing methods can
consistently fail to correct for stratification on mixtures
of several populations, yielding high false-positive rates.
When different levels of population mixture are consid-
ered, both genomic control and EIGENSTRAT have rela-
tively high false-positive rates, whereas PSAT maintains a
constant false-positive rate, which equals the threshold P
value (.05), as required. This can be explained by the fact
that PSAT accounts more accurately for the population
stratification effect.

In practice, one would aim to obtain an even mixture
of cases and controls; however, one would like to use a
method that is robust to uncontrolled mixing. Indeed,
although it is desirable and, in some cases, attainable,
many association studies contain a mixture of several dis-
tinct populations. For instance, Stranger et al.*® recently
identified and characterized functionally variable geno-
mic regions contributing to gene-expression differences
through effects on regulation of gene expression. To
achieve this goal, they produced a large data set of mRNA
transcript levels obtained from 270 individuals from four

populations of the HapMap project. Another example is
the study by Aranzana et al.,' in which genomewide poly-
morphism data and phenotypes were collected for differ-
ent types of Arabidopsis. Another interesting example is a
study conducted on a mixture of diverse populations by
Sutter et al.”* They used the breed structure of dogs to
investigate the genetic basis of size and found that a single
IGF1 SNP is common to all small breeds and is nearly
absent from giant breeds, suggesting that the same causal
sequence variant is a major contributor to body size in all
small dogs. In all these examples, the complex population
structure and the wide diversity were exploited to obtain
a more accurate association mapping.

The power of PSAT is higher than that of the other meth-
ods, because the LD structure is exploited by PSAT. For
example, when the mixture is even, the false-positive rate
of EIGENSTRAT approaches that of PSAT, but the power
of PSAT is larger by 10%. When different population
mixtures were tested, we adjusted the thresholds of the
other methods so that the significance is set to .05 (equal
to that of PSAT). In this case, we observed that the power
of PSAT is higher than that of the other methods by up
to 14%. It is important to note that such adjustment might
be impossible to apply in real scenarios, since it depends
on the existence of panels with exactly the same popu-
lation structure and without a causal SNP. In such situa-
tions, one cannot predict the false-positive rate of these
methods, because it depends on the population structure.
Put differently, the P value obtained by them will be
uncalibrated.

It is interesting to note that, although EIGENSTRAT
performed well in the sense of inferring population
structure—thus supporting our tentative choice of EIGEN-
STRAT as a procedure for estimating the baseline proba-
bility vector—the subsequent correction computed by EI-
GENSTRAT was not always accurate. Indeed, in extreme
cases, we saw that EIGENSTRAT yielded a false-positive
rate of 1. It is important to emphasize the general point
that computing an accurate correction is not a straight-
forward consequence of obtaining an accurate estimate of
population structure. In the specific case of EIGENSTRAT,
we provide an explanation of this decoupling of correction
estimation and population structure estimation in appen-
dix A. The high false-positive rate obtained by genomic
control can be explained by its artificial assumption that
the null is a multiplication of the x* distribution. Thisissue
was already raised by Marchini et al.”> We observed ex-
perimentally that the null of a mixture of populations
is not distributed as an inflated x* distribution (data not
shown).

In general, the computational feasibility of PSAT de-
pends on its exploitation of dynamic programming and
importance sampling. It is worth noting, however, that
the advantage of importance sampling is significant only
when the P value is small (<10%); if only large P values
(say, .05) are of interest, then it is possible to dispense
with importance sampling. We do not regard the use of

902 The American Journal of Human Genetics Volume 81

November 2007 www.ajhg.org



large P values as a satisfactory strategy, however. Small P
values are desirable in the context of making decisions
about whether to follow up on an association result and
are likely to become increasingly important in forthcom-
ing large-scale association studies. See the work of Kimmel
and Shamir'® and loannidis et al.** for further discussion
of thisissue. Running time is also important for simulation
purposes—for example, when it is required to calculate P
values across simulated panels to estimate the power of a
method. In this setting, a fast algorithm for calculating
the significance is essential.

It is possible to handle missing data within the PSAT
framework simply by adding another row to the contin-
gency table containing the number of individuals with
missing data. Note that the time complexity of ranging
over contingency tables is still polynomial in this case;
moreover, the running time remains independent of the
number of SNPs. Other covariates, such as age and sex,
can be used by incorporating them into the baseline prob-
ability vector. Continuous traits, such as blood pressure,
can be treated by the standard sampling of PSAT. It is less
straightforward, however, to adopt the importance sam-
pling algorithm to continuous traits, because the reduc-
tion to contingency tables is not possible in this case.

Although we have focused on controlling the error
probabilities associated with the maximum of the SNP
scores, other statistics can also be used within the PSAT
framework. One interesting example is the minimum of
the top k scores of the SNPs. This would be more appro-
priate if one wants to choose the k best SNPs to conduct
further investigation in the next research phase.

In many cases, ordering of the SNPs according to their
association score is used to select the most-promising SNPs
for a follow-up study or investigation. We explored this
by calculating the P value for each SNP separately with
PSAT and used it as the ranking score. Similar to EIGEN-
STRAT and as opposed to genomic control, PSAT reorders
the ranking of the scores. This can be of great importance,
since two different SNPs might be assigned the same score
by the standard association function, whereas one is more
biased by the population structure than the other. Our
experiments show that this issue has important implica-
tions for locating the correct causal SNPs. The advantage
of PSAT over EIGENSTRAT, in terms of discovery rate, is
up to 12%. The even higher difference from genomic con-
trol (>55%) can be explained by the unordered approach
taken by genomic control.

Our approach has some family resemblance to the re-
cent work of Epstein et al."” In particular, both approaches
use a two-step procedure—first finding a vector that rep-
resents population structure (the baseline probability vec-
tor in PSAT and the estimated odds of disease in the ap-
proach of Epstein et al.'”) and then using this vector to
correct for stratification. The second step, however, is
rather different in the two cases. Epstein et al. use stratified
logistic regression, with the subjects clustered into one of
five strata based on quartiles of the stratification scores.

In contrast, our method uses the baseline probability vec-
tor as the null model itself and does not assume a constant
number of clusters. Most importantly, PSAT takes the com-
plex LD structure into account by sampling from this null
model.

We emphasize that the focus of our work is a method
for correcting for stratification given the baseline proba-
bility vector. We have deliberately avoided the complex
question of how to infer the population structure, since
our focus is the correction. In our work to date, we have
used EIGENSTRAT for this purpose. It is noteworthy that,
in some cases, inferring the baseline probability vector can
be more challenging, and this simple approach would fail.
For example, in an admixed population, none of the in-
dividuals can be classified globally into one of a limited
number of clusters. Another example is an individual that
does not fall into any of the clusters. As we have noted,
however, other methods, including STRUCTURE,'? can be
used to provide these estimates, and, in some cases, they
should be tailored specifically to the studied data, accord-
ing to the known population history. Our approach makes
no specific assumption regarding the model used to pro-
vide estimates; any method that estimates probabilities
that each individual has a disease on the basis of (solely)
the population structure can be employed within our
approach.

In particular, we do not require modeling assumptions,
such as a constant number of ancestry populations. The
baseline probability vector can contain distinct probabil-
ities for all its components. This property is of importance
for several scenarios. One example is presented by Prit-
chard et al.”: species live on a continuous plane, with low
dispersal rates, so that allele frequencies vary continuously
across the plane. In PSAT, one can calculate the compo-
nents of the baseline probability vector for each individual
on the basis of the near neighbors. This avoids the as-
sumption of a constant number of populations. Thus, the
PSAT framework is naturally upgradeable as new methods
for inferring population structure become available. Fi-
nally, although we have observed empirically that the
population estimates provided by EIGENSTRAT seem to
be adequate for subsequent computations of corrections
by PSAT, it would be useful to attempt an analysis of the
statistical robustness of PSAT to errors in the population
structure estimates.
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Appendix A
In this appendix, we provide an explanation for the
failure of EIGENSTRAT to correct stratification. We show
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Figure A1. Illustration of the correction made by EIGENSTRAT. s, d, and a are vectors that represent the SNP, disease, and axis of
variation vectors, respectively. Observe that the projections of s and d on a are s-a and d-a, respectively, since a is a unit length,
50 that |a| = 1. The two dashed vectors are the vectors obtained after the correction, and the trend test is performed on them. If
a 1s in exactly the same direction as s and d then the adjusted vectors become zero, and there is no trend. However, any small change

in a will give two strongly correlated adjusted vectors, with a significant trend test.

that, even if the population structure is inferred accurately,
use of the structure as a covariate in a multilinear regres-
sion may lead to spurious results. To illustrate this issue,
consider the extreme situation in which the sample con-
tains cases from one population and controls from an-
other population. The correction of EIGENSTRAT is as fol-
lows. For each SNP vector, subtract its projections onto
the axes of variation. Do the same for the disease vector.
Then, check whether a trend exists between the corrected
SNP and disease vectors (by an Armitage trend test).

For simplicity, assume that we have only a single axis
of variation (as is usually done in the case of two popu-
lations). Consider the graphical illustration in figure Al.
In two different populations, there are usually few SNPs
with the property that one allele frequency is close to 1
in one population and close to O in the other (i.e., in the
other population, most of the individuals have the other
allele). This SNP and the disease vector point in the same
direction. If the axis of variation is the true one, then it
also points in the same direction. Decreasing the projec-
tions of these two vectors onto the axis of variation gives
two zero vectors, and the trend is not significant, as re-
quired. The problem is that, in real data sets, the axis of
variation is not exactly in the true direction but might be
very close to it. Since the SNP and the disease vectors are
in the same direction, the resulting subtracted vectors are
in the same direction, which gives a very high trend score,
yielding a false-positive result.

Most importantly, there is no correlation between the
amount of change in the axis of variation and the cor-
rection error. Any slight change in this axis can lead to
false-positive results. To see this, consider an inaccuracy
angle of & between a, the population vector, and s, the
SNP vector (fig. Al). The trend score calculated between
the adjusted vectors—that is, d —d-a and s — s-a—is M
(the number of samples), since these vectors are parallel,

so that the correlation coefficient is 1 and the trend-test
statistic is defined to be M times the square of the corre-
lation. Hence, the high score obtained in this case, M, is
independent of the amount of inaccuracy, . Therefore,
the method is very sensitive to small changes in the axis
of variation. Such small changes in this axis might occur
as a result of sampling error.

Note that it is not obligatory that all cases and controls
are from different populations for the correction of EI-
GENSTRAT to be wrong. It suffices to have a single SNP
with the property described above, so long as the axis of
variation is not exactly in the correct direction. These two
conditions seem likely to hold in many data sets; there-
fore, we anticipate that the EIGENSTRAT correction will
often be inaccurate. As expected and as can be observed
from our experiments, the closer the structure of the cases
and the controls, the less inaccurate the correction.

Web Resources
The URLs for data presented herein are as follows:

Affymetrix GeneChip Human Mapping 500K Array Set, http://
www.affymetrix.com/products/arrays/specific/SOOk.affx

EIGENSTRAT, http://genepath.med.harvard.edu/ reich/
EIGENSTRAT.htm (for software that detects and corrects for
population stratification in genomewide association studies)

HapMap, http://www.hapmap.org/

PSAT, http://www2.icsi.berkeley.edu/"kimmel/software/psat/ (for
the software PSAT, available for free for academic use)
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